Copied to
clipboard

G = C62.6(C2×C4)  order 288 = 25·32

5th non-split extension by C62 of C2×C4 acting via C2×C4/C2=C4

metabelian, soluble, monomial

Aliases: (C6×C12).7C4, C62.6(C2×C4), C323(C22⋊C8), C3⋊Dic3.51D4, (C3×C6).2M4(2), C2.1(C62⋊C4), C2.3(C32⋊M4(2)), (C2×C3⋊S3)⋊5C8, (C3×C6).10(C2×C8), (C2×C322C8)⋊2C2, (C22×C3⋊S3).8C4, (C2×C4).3(C32⋊C4), C2.4(C3⋊S33C8), C22.11(C2×C32⋊C4), (C3×C6).13(C22⋊C4), (C2×C3⋊Dic3).110C22, (C2×C4×C3⋊S3).13C2, SmallGroup(288,426)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C62.6(C2×C4)
C1C32C3×C6C3⋊Dic3C2×C3⋊Dic3C2×C322C8 — C62.6(C2×C4)
C32C3×C6 — C62.6(C2×C4)
C1C22C2×C4

Generators and relations for C62.6(C2×C4)
 G = < a,b,c,d | a6=b6=1, c2=d4=b3, ab=ba, ac=ca, dad-1=a-1b4, bc=cb, dbd-1=a4b, dcd-1=a3c >

Subgroups: 536 in 104 conjugacy classes, 22 normal (16 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C8, C2×C4, C2×C4, C23, C32, Dic3, C12, D6, C2×C6, C2×C8, C22×C4, C3⋊S3, C3×C6, C4×S3, C2×Dic3, C2×C12, C22×S3, C22⋊C8, C3⋊Dic3, C3×C12, C2×C3⋊S3, C2×C3⋊S3, C62, S3×C2×C4, C322C8, C4×C3⋊S3, C2×C3⋊Dic3, C6×C12, C22×C3⋊S3, C2×C322C8, C2×C4×C3⋊S3, C62.6(C2×C4)
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, C22⋊C4, C2×C8, M4(2), C22⋊C8, C32⋊C4, C2×C32⋊C4, C3⋊S33C8, C32⋊M4(2), C62⋊C4, C62.6(C2×C4)

Smallest permutation representation of C62.6(C2×C4)
On 48 points
Generators in S48
(1 15 43 23 29 39)(2 24)(3 33 31 17 45 9)(4 18)(5 11 47 19 25 35)(6 20)(7 37 27 21 41 13)(8 22)(10 32)(12 26)(14 28)(16 30)(34 46)(36 48)(38 42)(40 44)
(1 25 43 5 29 47)(2 48 30 6 44 26)(3 41 31 7 45 27)(4 28 46 8 32 42)(9 21 33 13 17 37)(10 38 18 14 34 22)(11 39 19 15 35 23)(12 24 36 16 20 40)
(1 7 5 3)(2 22 6 18)(4 24 8 20)(9 39 13 35)(10 44 14 48)(11 33 15 37)(12 46 16 42)(17 23 21 19)(25 45 29 41)(26 34 30 38)(27 47 31 43)(28 36 32 40)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)

G:=sub<Sym(48)| (1,15,43,23,29,39)(2,24)(3,33,31,17,45,9)(4,18)(5,11,47,19,25,35)(6,20)(7,37,27,21,41,13)(8,22)(10,32)(12,26)(14,28)(16,30)(34,46)(36,48)(38,42)(40,44), (1,25,43,5,29,47)(2,48,30,6,44,26)(3,41,31,7,45,27)(4,28,46,8,32,42)(9,21,33,13,17,37)(10,38,18,14,34,22)(11,39,19,15,35,23)(12,24,36,16,20,40), (1,7,5,3)(2,22,6,18)(4,24,8,20)(9,39,13,35)(10,44,14,48)(11,33,15,37)(12,46,16,42)(17,23,21,19)(25,45,29,41)(26,34,30,38)(27,47,31,43)(28,36,32,40), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)>;

G:=Group( (1,15,43,23,29,39)(2,24)(3,33,31,17,45,9)(4,18)(5,11,47,19,25,35)(6,20)(7,37,27,21,41,13)(8,22)(10,32)(12,26)(14,28)(16,30)(34,46)(36,48)(38,42)(40,44), (1,25,43,5,29,47)(2,48,30,6,44,26)(3,41,31,7,45,27)(4,28,46,8,32,42)(9,21,33,13,17,37)(10,38,18,14,34,22)(11,39,19,15,35,23)(12,24,36,16,20,40), (1,7,5,3)(2,22,6,18)(4,24,8,20)(9,39,13,35)(10,44,14,48)(11,33,15,37)(12,46,16,42)(17,23,21,19)(25,45,29,41)(26,34,30,38)(27,47,31,43)(28,36,32,40), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48) );

G=PermutationGroup([[(1,15,43,23,29,39),(2,24),(3,33,31,17,45,9),(4,18),(5,11,47,19,25,35),(6,20),(7,37,27,21,41,13),(8,22),(10,32),(12,26),(14,28),(16,30),(34,46),(36,48),(38,42),(40,44)], [(1,25,43,5,29,47),(2,48,30,6,44,26),(3,41,31,7,45,27),(4,28,46,8,32,42),(9,21,33,13,17,37),(10,38,18,14,34,22),(11,39,19,15,35,23),(12,24,36,16,20,40)], [(1,7,5,3),(2,22,6,18),(4,24,8,20),(9,39,13,35),(10,44,14,48),(11,33,15,37),(12,46,16,42),(17,23,21,19),(25,45,29,41),(26,34,30,38),(27,47,31,43),(28,36,32,40)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)]])

36 conjugacy classes

class 1 2A2B2C2D2E3A3B4A4B4C4D4E4F6A···6F8A···8H12A···12H
order122222334444446···68···812···12
size11111818442299994···418···184···4

36 irreducible representations

dim1111112244444
type+++++++
imageC1C2C2C4C4C8D4M4(2)C32⋊C4C2×C32⋊C4C3⋊S33C8C32⋊M4(2)C62⋊C4
kernelC62.6(C2×C4)C2×C322C8C2×C4×C3⋊S3C6×C12C22×C3⋊S3C2×C3⋊S3C3⋊Dic3C3×C6C2×C4C22C2C2C2
# reps1212282222444

Matrix representation of C62.6(C2×C4) in GL6(𝔽73)

7200000
0720000
001100
0072000
0000720
0000072
,
7200000
0720000
00727200
001000
00007272
000010
,
4600000
7270000
001000
000100
0000720
0000072
,
63480000
0100000
000010
000001
001000
00727200

G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,1,0,0,0,0,72,0,0,0,0,0,0,0,72,1,0,0,0,0,72,0],[46,7,0,0,0,0,0,27,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[63,0,0,0,0,0,48,10,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,72,0,0,1,0,0,0,0,0,0,1,0,0] >;

C62.6(C2×C4) in GAP, Magma, Sage, TeX

C_6^2._6(C_2\times C_4)
% in TeX

G:=Group("C6^2.6(C2xC4)");
// GroupNames label

G:=SmallGroup(288,426);
// by ID

G=gap.SmallGroup(288,426);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,28,141,120,100,9413,691,12550,2372]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=1,c^2=d^4=b^3,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1*b^4,b*c=c*b,d*b*d^-1=a^4*b,d*c*d^-1=a^3*c>;
// generators/relations

׿
×
𝔽